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1 Introduction17

Clustering or grouping a data set into conceptually meaningful clusters is a well-studied18

problem in recent literature, and it has practical importance in a wide variety of applica-19

tions (Gan et al., 2007; Iyigun, 2007; Jain, 2010; Liao et al., 2012; Morales-Esteban et al.,20

2010; Mostafa, 2013; Pintér, 1996; Sabo et al., 2011; Scitovski and Scitovski, 2013).21

A partition of the set A = {ai ∈ Rn : i = 1, . . . , m} ⊂ Rn into k disjoint subsets22

π1, . . . , πk, 1 ≤ k ≤ m, such that23

k∪
i=1

πi = A, πr ∩ πs = ∅, r ̸= s, |πj| ≥ 1, j = 1, . . . , k, (1)24

will be denoted by Π(A) = {π1, . . . , πk} and the set of all such partitions by P(A, k). The25

elements π1, . . . , πk of the partition Π are called clusters in Rn.26

Suppose also that a weight wi > 0 is associated to each data point. If d : Rn×Rn → R+,27

R+ = [0, +∞⟩ is some distance-like function (see e.g. Kogan (2007); Teboulle (2007)), then28

to each cluster πj ∈ Π we can associate its center cj defined by29

cj = c(πj) := argmin
x∈conv(πj)

∑
ai∈πj

wid(x, ai). (2)30

1Corresponding author: Rudolf Scitovski, e-mail: scitowsk@mathos.hr, Telephone number: ++385-
31-224-800, Fax number: ++385-224-801
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where conv(πj) denotes the convex hull of the cluster πj. It is said that the partition1

Π⋆ ∈ P(A, k) is a globally optimal k-partition if2

Π⋆ = argmin
Π∈P(A,k)

F (Π), F (Π) =
k∑

j=1

∑
ai∈πj

wid(cj, ai), (3)3

where F : P(A, k) → R+ is the objective function.4

Conversely, for a given set of mutually different points z1, . . . , zk ∈ Rn, by applying5

the minimal distance condition, we can define the partition Π = {π1, . . . , πk} of the set6

A, where one has to take care that every element of the set A occurs in one and only one7

cluster (Kogan, 2007; Späth, 1983). Therefore, the problem of finding an optimal partition8

of the set A can be reduced to the following global optimization problem (Sabo et al.,9

2013; Teboulle, 2007)10

argmin
z1,...,zk∈Rn

Φ(z1, . . . , zk), Φ(z1, . . . , zk) =
m∑

i=1
wi min

1≤j≤k
d(zj, ai), (4)11

where Φ: Rkn → R+. Thereby the objective function Φ can have a great number of12

independent variables (the number of clusters in the partition multiplied by the dimen-13

sion of data points (k · n)), it does not have to be either convex or differentiable and14

generally it may have several local minima. Therefore, this becomes a complex global op-15

timization problem (Bagirov and Ugon, 2005; Bagirov, 2008; Floudas and Gounaris, 2009;16

Jain, 2010; Scitovski and Scitovski, 2013). The solution of (3) and (4) coincides (Späth,17

1983). Since our objective function (4) is a Lipschitz continuous function (Pintér, 1996;18

Sabo et al., 2013), there are numerous methods for its minimization (Grbić et al., 2012;19

Pintér, 1996; Sergeyev and Kvasov, 2011).20

The most popular algorithm for searching for a locally optimal partition is the k-means21

algorithm. By knowing a good initial approximation, this algorithm can provide accept-22

able solutions (Cao et al., 2009; Tasoulis and Vrahatis, 2007; Volkovich et al., 2007). In23

case we do not have a good initial approximation, what is usually recommended (Leisch,24

2006) are multi-run algorithms with various random initializations.25

In the sequel, a special least square distance-like function (LS-distance-like function)26

given by d(x, y) = ∥x − y∥2
2, x, y ∈ Rn will be used.27

In this paper, we especially consider the problem of the occurrence of some data point28

on the border of two or more clusters during the execution of the k-means algorithm.29

Explicit criteria which clearly define locally optimal behavior in this case are proposed30

and proved.31

The paper is organized as follows. In the next section, some auxiliary results are32

given. In Section 3, the optimal behavior strategy during the k-means algorithm in the33

case of the occurrence of some data points on the border of two clusters and the case when34

such data points occur on the border of several clusters are considered, because different35

behavior is observed in these cases. Finally, some conclusions are given in Section 4.36
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2 Preliminaries1

Here are a few auxiliary results which will be used in the following sections. The following2

lemma (see e.g. Kogan (2007)) shows the relationship between the weighted sum of squares3

of distances from the data points to the centroid and from the data points to any point4

from Rn.5

Lemma 1. Let A = {ai ∈ Rn : i = 1, . . . , m} be a set of data points with a corresponding6

set of weights W = {wi > 0: i = 1, . . . , m}. Then for each x ∈ Rn there holds7

m∑
i=1

wi∥ai − x∥2 =
m∑

i=1
wi∥ai − c∥2 + σ∥x − c∥2, (5)8

where σ = ∑m
i=1 wi, and c = 1

σ

∑m
i=1 wiai is a centroid of the data.9

For two disjoint sets of data with the corresponding weights, the following lemma gives10

explicit formulas for the centroid and the objective function value of the union of these11

two sets.12

Lemma 2. Let A = {ai ∈ Rn : i = 1, . . . , p}, B = {bi ∈ Rn : i = 1, . . . , q} be disjoint13

sets with corresponding sets of weights WA = {αi > 0: i = 1, . . . , p}, WB = {βi > 0: i =14

1, . . . , q}. Then the following holds15

F ({(WA; A), (WB; B)}) = F (WA; A) + F (WB; B) + σA∥c − cA∥2 + σB∥c − cB∥2, (6)16

where17

cA = 1
σA

p∑
i=1

αiai, cB = 1
σB

q∑
i=1

βibi, σA =
p∑

i=1
αi, σB =

q∑
i=1

βi,18

c = σA

σA+σB
cA + σB

σA+σB
cB. (7)19

20

Proof. Formula (7) is obtained by direct checking. Furthermore, because of21

F ({(WA; A), (WB; B)}) =
p∑

i=1
αi∥ai − cA∥2 +

q∑
i=1

βi∥bi − cB∥2,22

if (5) is applied to each right-hand side of the sum, then we obtain (6).23

For the given set of data points with the corresponding weights the following lemma24

shows how the objective function value changes if the weight of some data increases or if25

the weight of this data vanishes.26

Lemma 3. Let A = {ai ∈ Rn : i = 1, . . . , p} be a data set with the corresponding set of27

weights W = {wi > 0: i = 1, . . . , p}. Denote σ := ∑p
i=1 wi and cw = 1

σ

∑p
i=1 wiai. Then28

the following holds:29
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(i) If the weight wi0 of the i0-th data is increased for δ > 0 and if the new set of weights1

is denoted by W+, then there holds2

F (W+; A) = F (W ; A) + σδ
σ+δ

∥cw − ai0∥2. (8)3

(ii) If the weight wi0 of the i0-th data vanishes and if the new set of weights is denoted4

by W−, then there holds5

F (W−; A) = F (W ; A) − wi0 σ

σ−wi0
∥cw − ai0∥2. (9)6

Proof. (i) Suppose that the weight wi0 of the i0-th data point is increased for δ. For-7

mally, we can consider that a new data (δ, ai0) is added to the data set (W ; A).8

According to (7), the centroid cw+ of the new data set (W+; A) is given by9

cw+ = σ
σ+δ

cw + δ
σ+δ

ai0 . (10)10

Since F (wi0 ; ai0) = 0, by using (6) and (10) we obtain11

F (W+; A) =F (W ; A) + σ∥cw+ − cw∥2 + δ∥cw+ − ai0∥2
12

=F (W ; A) + σ∥ −δ
σ+δ

cw + δ
σ+δ

ai0∥2 + δ∥ σ
σ+δ

cw − σ
σ+δ

ai0∥2
13

=F (W ; A) + σδ
(σ+δ)∥cw − ai0∥2.14

15

(ii) Suppose that the weight wi0 of the i0-th data point vanishes. Formally, we can16

consider that the data (wi0 , ai0) is deleted from the data set (W ; A). The centroid17

cw− of the new data set (W−; A) is given by18

cw− = σ
σ−wi0

cw − wi0
σ−wi0

ai0 . (11)19

Namely,20

cw− = 1
σ−wi0

p∑
i=2

wiai = 1
σ−wi0

(
σ 1

σ

p∑
i=1

wiai − wi0ai0

)
= 1

σ−wi0
(σcw − wi0ai0) .21

Furthermore, since F (wi0 ; ai0) = 0, by using (6) and (11) we obtain22

F (W ; A) =F (W−; A) + (σ − wi0)∥cw − cw−∥2 + wi0∥cw − ai0∥2
23

=F (W−; A) + (σ − wi0)∥ −wi0
σ−wi0

cw + wi0
σ−wi0

ai0∥2 + wi0∥cw − ai0∥2
24

=F (W−; A) + σwi0
σ−wi0

∥cw − ai0∥2,25
26

from which (9) follows immediately.27

28
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3 Analysis of the k-means algorithm in the case if1

some data points occur on border of two or more2

clusters3

Let A = {ai ∈ Rn : i = 1, . . . , m} be a given data set with the corresponding weights4

wi > 0. The set A should be divided into k (2 ≤ k ≤ m) disjoint unempty clusters.5

The most known algorithm for searching for a locally optimal partition is the k-means6

algorithm (Dhillon et al., 2004; Durak, 2011; Leisch, 2006; Ng, 2000; Steinley and Brusco,7

2007; Su and Kogan, 2008; Tasoulis and Vrahatis, 2007), which can be described by two8

steps which are iteratively repeated.9

Step 1 For each set of mutually different assignment points z1, . . . , zk ∈ Rn the set A should10

be divided into k disjoint unempty clusters π1, . . . , πk by using the minimal distance11

principle12

πj = {a ∈ A : ∥zj − a∥ ≤ ∥zs − a∥, ∀s = 1, . . . , k}; (12)13

Step 2 Given a partition Π = {π1, . . . , πk} of the set A, one can define the corresponding14

centroids by15

cj = argmin
x∈conv πj

∑
ai∈πj

wi∥x − ai∥2 = 1
Wj

∑
ai∈πj

wiai, Wj =
∑

ai∈πj

wi, j = 1, . . . , k; (13)16

Suppose that in Step 1 some data point might occur on the border of two or several17

clusters. An example of such situation in applications is a uniform distribution of the18

number of voters of some country in several constituencies. Thereby a requirement to19

divide the voters of some city into two or several constituencies (clusters) appears almost20

always (Sabo et al., 2012; Ricca et al., 2011). Such situations in fuzzy clustering are also21

considered (see e.g. Peters (2006)). A decision on alignment of this data point to some22

cluster can significantly determine a further flow of the iterative process. Thereby, it will23

be shown that there exists an essential difference in the case when this data point lies24

on the border of two clusters and in the case when this data point lies on the border25

of several clusters. Therefore, we will carry out a separate analysis for these two cases,26

whereby the following lemma will play an important role.27

Lemma 4. Let m1, . . . , mκ ≥ 2 be κ ≥ 2 integers. Then for each r = 1, . . . , κ there holds28

δr := (κ−1)(1+κ(mr−1))
κ2mr

− 1
κ2

∑
s̸=r

1+κ(ms−1)
ms−1 < 0, (14)29

and30

∆rt := δr − δt = (1+κ(mr−1))2

κ2mr(mr−1) − (1+κ(mt−1))2

κ2mt(mt−1) , ∀r, t ∈ {1, . . . , κ}. (15)31

Thereby, if κ = 2, then32

∆rt < 0 ⇔ mr > mt; (16)33
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and if κ ≥ 3, then1

∆rt < 0 ⇔ mr < mt. (17)2

Proof. Inequality (14) follows from3

(κ−1)(1+κ(mr−1))
κ2mr

− 1
κ2

∑
s ̸=r

1+κ(ms−1)
ms−1 = 1

mr

(
1 − 1

κ

) (
1
κ

+ mr − 1
)

− 1
κ2

∑
s̸=r

1
ms−1 − 1

κ2 (κ − 1)κ4

= − 1
mr

(
1 − 1

κ

)2
+ 1 − 1

κ
− 1

κ2

∑
s ̸=r

1
ms−1 − 1 + 1

κ
5

= − 1
mr

(
1 − 1

κ

)2
− 1

κ2

∑
s̸=r

1
ms−1 < 0.6

7

Equality (15) follows from8

∆rt = (κ−1)(1+κ(mr−1))
κ2mr

− 1
κ2

∑
s ̸=r

1+κ(ms−1)
ms−1 − (κ−1)(1+κ(mt−1))

κ2mt
+ 1

κ2

∑
s̸=t

1+κ(ms−1)
ms−19

= (κ−1)(1+κ(mr−1))
κ2mr

+ 1
κ2

1+κ(mr−1)
mr−1 −

(
(κ−1)(1+κ(mt−1))

κ2mt
+ (κ−1)(1+κ(mt−1))

κ2mt

)
10

= (1+κ(mr−1))2

κ2mr(mr−1) − (1+κ(mt−1))2

κ2mt(mt−1) .11
12

In order to prove equivalences (16) and (17), we define an auxiliary function f : [2, +∞⟩×13

[1, +∞⟩ → R,14

f(κ, x) := (1+κ(x−1))2

κ2x(x−1) , (18)15

whose partial derivative with respect to the variable x can be written as16

∂f(κ,x)
∂x

= ((κ−1)2−1)x2−2(κ−1)2x+(κ−1)2

κ2x2(x−1)2 . (19)17

If κ = 2, from (19) it can be seen that function (18) is decreasing according to x, and18

therefore (16) holds. If κ > 2, from (19) it can be seen that function (18) is increasing19

according to x, and therefore (17) holds.20

Remark 1. Note that specially for κ = 2 and m1 = p ≥ 2, m2 = q ≥ 2 inequality (14)21

becomes22

2p−1
4p

− 2q−1
4(q−1) < 0 and 2q−1

4q
− 2p−1

4(p−1) < 0,23

that is equivalent to a simple inequality24

p + q > 1, (20)25

which is fulfilled in this case.26

Furthermore, (15) becomes27

∆ := (1−2p)2

4p(p−1) − (1−2q)2

4q(q−1) ,28

thereby29

∆ < 0 ⇔ p > q. (21)30



7

3.1 Some data point can occur on the border of two clusters1

Let A = {ai ∈ Rn : i = 1, . . . , m} be a set of data points, which should be divided into2

two unempty disjoint clusters by applying the k-means algorithm (12)-(13). We start3

from Step 1, choose two different assignment points z1, z2, and by applying the minimal4

distance principle define clusters5

π1 = {a ∈ A : ∥z1 − a∥ < ∥z2 − a∥}, |π1| = p − 1, (22)6

π2 = {a ∈ A : ∥z2 − a∥ < ∥z1 − a∥}, |π2| = q − 1. (23)7
8

Suppose that thereby a data point a0 ∈ A occurs such that9

∥z1 − a0∥ = ∥z2 − a0∥. (24)10

This would mean that π1 ∪ π2 ̸= A. Note that m = p + q − 1. In order to fulfill condition11

(1) it is usually recommended in literature (Kogan, 2007; Steinley and Brusco, 2007) that12

the data point a0 is assigned either to the cluster π1 or to the cluster π2.13

Alternatively, we can introduce weights of the data such that weight 1 is associated14

to all data, except the data point a0, and the data point a0 with weight 1
2 is associated15

to both the cluster π1 and the cluster π2 (as if the data point a0 were halved). Centroids16

and the objective function value of clusters obtained in that way are given by17

c1 = 1
p− 1

2

( ∑
ai∈π1

ai + 1
2a0

)
, c2 = 1

q− 1
2

( ∑
ai∈π2

ai + 1
2a0

)
, (25)18

F0 =
∑

ai∈π1

∥c1 − ai∥2 +
∑

ai∈π2

∥c2 − ai∥2 + 1
2∥c1 − a0∥2 + 1

2∥c2 − a0∥2. (26)19

20

If the whole data point a0 is assigned to the cluster π1, we obtain a new centroid of21

the cluster π1 given by (10) and a new centroid of the cluster π2 given by (11), and by22

using (8) and (9) we get a new objective function value23

F1 := F0 + 2p−1
4p

∥c1 − a0∥2 − 2q−1
4(q−1)∥c2 − a0∥2. (27)24

If the whole data point a0 is assigned to the cluster π2, we obtain a new centroid of25

the cluster π2 given by (10) and a new centroid of the cluster π1 given by (11), and by26

using (8) and (9) we get a new corresponding objective function value27

F2 := F0 + 2q−1
4q

∥c2 − a0∥2 − 2p−1
4(p−1)∥c1 − a0∥2. (28)28

One also gets29

∆ :=F1 − F2 = (1−2p)2

4p(p−1)∥c1 − a0∥2 − (1−2q)2

4q(q−1)∥c2 − a0∥2. (29)30
31

Similar formulas appear in the Incremental k-means algorithm (Kogan2007, Steinley2007).32

In the following theorem we summarize the obtained results and show the manner of33

optimal behavior in the case when some data point a0 ∈ A occurs on the border of two34

clusters.35
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Theorem 1. Let A = {ai ∈ Rn : i = 1, . . . , m} be a set of data points, let z1, z2 be two1

different assignment points by which clusters (22)-(23) are defined, and let there exist a2

data point a0 ∈ A, such that ∥z1 − a0∥ = ∥z2 − a0∥. Then3

(i) If the data point a0 is uniformly divided on both clusters π1 and π2, centroids c1, c24

of clusters are given by (25), and the corresponding objective function value F0 is5

given by (26);6

(ii) If the data point a0 is assigned to the cluster π1 completely, the new objective function7

value F1 is given by (27);8

(iii) If the data point a0 is assigned to the cluster π2 completely, the new objective function9

value F2 is given by (28);10

(iv) If the data point a0 is assigned either to the cluster π1 or to the cluster π2 completely,11

a reduction in the objective function value is attained, i.e. min{F1, F2} < F0;12

(v) If λ1 = (1−2p)2

4p(p−1)∥c1 − a0∥2, λ2 = (1−2q)2

4q(q−1)∥c2 − a0∥2, then a reduction in the objective13

function value is attained by assigning the data point a0 completely to the cluster π114

(i.e. to the cluster π2) if and only if λ1 ≤ λ2 (i.e. λ2 ≤ λ1).15

Proof. (iv) If ∥c1 − a0∥ ≤ ∥c2 − a0∥, then according to Remark 1, from (27) there follows16

F1 ≤ F0 +
(

2p−1
4p

− 2q−1
4(q−1)

)
∥c2 − a0∥2 < F0,17

which means that in this case a reduction in the objective function value can be attained18

by assigning the data point a0 completely to the cluster π1. Analogously, if ∥c2 − a0∥ ≤19

∥c1 − a0∥, then according to Remark 1, from (28) there follows20

F2 = F0 +
(

2q−1
4q

− 2p−1
4(p−1)

)
∥c1 − a0∥2 < F0,21

which means that in this case a reduction in the objective function value can be attained22

by assigning the data point a0 completely to the cluster π2. So, a reduction in the objective23

function value can always be attained by assigning the data point a0 either to the cluster24

π1 or to the cluster π2 completely.25

(v) follows immediately from (29).26

Corollary 1. Let the data be given as in Theorem 1. If ∥c1 − a0∥ ≤ ∥c2 − a0∥, the lower27

objective function value is attained by assigning the data point a0 completely to the cluster28

with more data.29

Proof. If ∥c1 − a0∥ ≤ ∥c2 − a0∥, the difference (29) becomes30

∆ ≤
(

(1−2p)2

4p(p−1) − (1−2q)2

4q(q−1)

)
∥c1 − a0∥2,31

and the assertion follows immediately by applying Lemma 4 and Remark 1.32
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Example 1. As an illustration of Theorem 1 we consider the data set A ⊂ R, which1

consists of the subset π0 = {1, 2}, the data point a0 = 6 and alternatively the data point2

b ∈ {9, 11.4, 12}. Various situations that may occur are shown in Table 1 for the same as-3

signment points z1 = 5, z2 = 7. The lowest objective function value attained in particular4

cases is especially assigned.5

{{π0, (1
2 , 6)}, {(1

2 , 6), b}} {{π0, 6}, {b}} {{π0}, {6, b}}
b c1 c2 λ1 λ2 d(c1, a0) d(c2, a0) F0 c1 c2 F1 c1 c2 F2

9 2.4 8 13.5 4.5 3.6 2 14 3 9 14 1.5 7.5 5
11.4 2.4 9.6 13.5 14.58 3.6 3.6 18.32 3 11.4 14 1.5 8.7 15.08
12 2.4 10 13.5 18 3.6 4 20.6 3 12 14 1.5 9 18.5

Table 1: Displacement of data points from the border of two clusters

Remark 2. If in the k-means algorithm (12)-(13) we started from Step 2 and determined6

centroids c1, c2 for given clusters, then the problem considered above might occur in the7

next step (Step 1): if there exists a0 ∈ A such that ∥c1 − a0∥ = ∥c2 − a0∥, a decision has8

to be made again referring to which cluster it should be assigned to.9

3.2 Some data point can occur on the border of several clusters10

Let A = {ai ∈ Rn : i = 1, . . . , m} be a set of data points, which should be divided into k11

unempty disjoint clusters by applying the k-means algorithm (12)-(13).12

We start from Step 1, choose k mutually different assignment points z1, . . . , zk ∈ Rn
13

and by applying the minimal distance principle define clusters14

πj = {a ∈ A : ∥zj − a∥ < ∥zs − a∥, s ̸= j}, |πj| = mj − 1, j = 1, . . . , k. (30)15

Suppose that thereby a data point a0 ∈ A lies on the common border of 3 ≤ κ ≤ k16

clusters17

∥z1 − a0∥ = · · · = ∥zκ − a0∥. (31)18

This would mean that ∪k
j=1 πj ̸= A. In order to fulfill condition (1) it is usually recom-19

mended in literature (Kogan, 2007; Steinley and Brusco, 2007) that the data point a0 is20

assigned to some of clusters π1, . . . , πk.21

For the purposes of further analysis of such situation, without loss of generality, we22

furthermore suppose that κ = k, and introduce the notation J = {1, . . . , κ}.23

Alternatively, we can introduce weights of the data such that weight 1 is associated to24

all data, except the data point a0, and the data point a0 with weight 1
κ

is associated to25
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all clusters (as if the data point a0 were uniformly divided into all κ clusters). Centroids1

and the objective function value of clusters obtained in that way are given by2

cj = 1
mj+ 1

κ
−1

 ∑
ai∈πj

ai + 1
κ
a0

 , j = 1 . . . , κ, (32)3

F0 =
κ∑

j=1

∑
ai∈πj

∥cj − ai∥2 + 1
κ

κ∑
j=1

∥cj − a0∥2. (33)4

5

If the whole data point a0 is assigned to the cluster πr, r ∈ J , we obtain a new centroid6

of the cluster πr given by (10) and new centroids of other clusters given by (11), and by7

using (8) and (9) we get a new corresponding objective function value8

Fr := F0 + (κ−1)(1+κ(mr−1))
κ2mr

∥cr − a0∥2 − 1
κ2

∑
s ̸=r

1+κ(ms−1)
ms−1 ∥cs − a0∥2. (34)9

Also ∀r, t ∈ J one gets10

∆rt :=Fr − Ft = (1+κ(mr−1))2

κ2mr(mr−1) ∥cr − a0∥2 − (1+κ(mt−1))2

κ2mt(mt−1) ∥ct − a0∥2. (35)11
12

In the following theorem we summarize the obtained results and show the manner of13

optimal behavior in the case when some data point a0 ∈ A occurs on the border of several14

clusters.15

Theorem 2. Let A = {ai ∈ Rn : i = 1, . . . , m} be a set of data points, let z1, . . . , zκ be16

mutually different assignment points by which clusters (30) are defined, and let there exist17

a0 ∈ A, such that ∥z1 − a0∥ = · · · = ∥zκ − a0∥. Then18

(i) If the data point a0 is uniformly divided into all clusters, centroids c1, . . . , cκ of19

clusters are given by (32), and the corresponding objective function value F0 is given20

by (33);21

(ii) If the data point a0 is assigned to the cluster πr, r ∈ J completely, the new objective22

function value Fr is given by (34);23

(iii) There exists r ∈ J , such that assigning the data point a0 completely to the cluster24

πr provides a reduction in the objective function value, i.e. Fr = min
s∈J

Fs < F0;25

(iv) If λj = (1+κ(mj−1))2

κ2mj(mj−1) ∥cj − a0∥2, j ∈ J , then the lowest objective function value is26

attained by assigning the data point a0 completely to the cluster πj0, j0 ∈ J if and27

only if λj0 = min
j∈J

λj.28

Proof. If ∥cr − a0∥ = min
s∈J

∥cs − a0∥, then according to Lemma 4, from (34) it follows29

Fr ≤ F0 +

 (κ−1)(1+κ(mr−1))
κ2mr

− 1
κ2

∑
s ̸=r

1+κ(ms−1)
ms−1

 ∥cr − a0∥2 < F0,30
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which means that a reduction in the objective function value can be attained by assigning1

the data point a0 completely to the cluster πr, whose centroid is nearest to the data point2

a0.3

According to (35), the lowest objective function value is attained by assigning the data4

point a0 completely to the cluster πj0 if and only if for each s ∈ {1, . . . , κ} there holds5

∆j0s = (1+κ(mj0 −1))2

κ2mj0 (mj0 −1) ∥cj0 − a0∥2 − (1+κ(ms−1))2

κ2ms(ms−1) ∥cs − a0∥2 ≤ 0,6

i.e. if and only if λj0 = min
j∈J

λj.7

Corollary 2. Let the data be given as in Theorem 2. If ∥c1 − a0∥ = · · · = ∥cκ − a0∥, the8

lowest objective function value is attained by assigning the data point a0 completely to the9

cluster with the least data.10

Furthermore, if πj0 is the cluster with the least data and if ∥cj0 − a0∥ ≤ ∥cj − a0∥ for11

each j ∈ J , then the lowest objective function value is attained by assigning the data point12

a0 completely to the cluster πj0.13

Proof. If ∥c1 − a0∥ = · · · = ∥cκ − a0∥, equality (35) becomes14

∆rt =
(

(1+κ(mr−1))2

κ2mr(mr−1) − (1+κ(mt−1))2

κ2mt(mt−1)

)
∥c1 − a0∥2,15

and the assertion follows immediately by applying Lemma 4 .16

The second part of the assertion follows from the fact that ∆j0t < 0 ⇔ mj0 < mt for17

each t ∈ J \ {j0}.18

Example 2. The data set is defined in the following way. First, the data point a0 ∈ R2
19

and five assignment points z1, . . . , z5 ∈ R2 randomly chosen on the circumference with the20

origin at the point a0 are determined. In the neighborhood of each point zj have generated21

random points such that coordinates of points zj are contaminated with binormal random22

additive errors with mean vector 0 ∈ R2 and the identity covariance matrix. In this23

way we obtained a data set A. According to the minimal distance principle, clusters24

πj = π(zj), j = 1, . . . , 5 are defined by assignment points z1, . . . , z5. Thereby, the point a025

lies on the common border of all five clusters (Fig. 1a).26

Table 2 gives values of parameters λj from Theorem 2, distances from the centroids27

of clusters to the data point a0, and the objective function values obtained by assigning28

the data point a0 completely to some cluster.29

Fig. 1b and Fig. 1c show the partition with the lowest objective function value obtained30

by assigning the data point a0 completely to the cluster π4 and the partition with the31

highest objective function value obtained by assigning the data point a0 completely to32

the cluster π5, respectively.33
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j = 1 j = 2 j = 3 j = 4 j = 5

λj 1.0966 1.2136 1.5409 1.3053 1.0933
∥cj − a0∥ 1.0632 1.1278 1.2687 1.1591 1.0726
F (a0 99K πj) 24.9058 25.0228 25.3500 25.1144 24.9024

Table 2: Choosing the optimal position of the data point a0

1 2 3 4

1

2

3

4

(a) a0 ∈
∩

πj

F0 = 25.1288

π1

π2
π3

π4

π5

(b) a0 99K π5
F5 = 24.9024

π1

π2
π3

π4

π5

(c) a0 99K π3
F3 = 25.3500

π1

π2
π3

π4

π5

Figure 1: Choosing the optimal position of the data point a0

4 Conclusions1

The k-means algorithm is the most popular method for searching for the locally optimal2

partition of some data set A ⊂ Rn. If during the iterative process some data points occur3

on the border of two or more clusters, the known literature does not clearly indicate what4

to do. In this paper, explicit criteria which clearly define optimal behavior in this case5

are proposed and proved.6

The position of some data point in the immediate neighborhood of the border of two or7

more clusters (Peters, 2006) or applications in fuzzy clustering can also be the subject of8

further research. This research could lead to an important improvement of the well-known9

k-means algorithm.10
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